Content area

Abstract

Scientific machine learning (SciML) offers an emerging alternative to the traditional modeling approaches for wave propagation. These physics-based models rely on computationally demanding numerical techniques. However, SciML extends artificial neural network-based wave models with the capability of learning wave physics. Contrary to the physics-intensive methods, particularly physics-informed neural networks (PINNs) presented earlier, this study presents data-driven frameworks of physics-guided neural networks (PgNNs) and neural operators (NOs). Unlike PINNs and PgNNs, which focus on specific PDEs with respective boundary conditions, NOs solve a family of PDEs and hold the potential to easily solve different boundary conditions. Hence, NOs provide a more generalized SciML approach. NOs extend neural networks to map between functions rather than vectors, enhancing their applicability. This review highlights the potential of NOs in wave propagation modeling, aiming to advance wave-based structural health monitoring (SHM). Through comparative analysis of existing NO algorithms applied across different engineering fields, this study demonstrates how NOs improve generalization, accelerate inference, and enhance scalability for practical wave modeling scenarios. Lastly, this article identifies current limitations and suggests promising directions for future research on NO-based methods within computational wave mechanics.

Details

1009240
Business indexing term
Title
Scientific Machine Learning for Elastic and Acoustic Wave Propagation: Neural Operator and Physics-Guided Neural Network
Publication title
Sensors; Basel
Volume
25
Issue
12
First page
3588
Number of pages
27
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-06
Milestone dates
2025-04-24 (Received); 2025-06-04 (Accepted)
Publication history
 
 
   First posting date
06 Jun 2025
ProQuest document ID
3223942181
Document URL
https://www.proquest.com/scholarly-journals/scientific-machine-learning-elastic-acoustic-wave/docview/3223942181/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-07
Database
ProQuest One Academic