Content area

Abstract

In network function virtualization (NFV) environments, dynamic network traffic prediction with unique symmetric and asymmetric traffic patterns is critical for efficient resource orchestration and service chain optimization. Traditional centralized prediction models face risks of cross-provider data privacy leakage when network service providers collaborate with resource providers to deliver services. To address this issue, we propose a decentralized federated learning method for network traffic prediction, which ensures that historical network traffic data remain stored locally without requiring cross-provider sharing. To further mitigate interference from malicious provider behaviors on network traffic prediction, we design a node incentive mechanism that dynamically adjusts node roles (e.g., “Aggregator”, “Worker Node”, “Residual Node”, and “Evaluator”). When a node exhibits malicious behavior, its contribution score is reduced; otherwise, it is rewarded. Simulation experiments conducted on an NFV platform using public network traffic datasets demonstrate that the proposed method maintains prediction accuracy even in scenarios with a high proportion of malicious nodes, alleviates their adverse effects, and ensures prediction stability.

Details

1009240
Business indexing term
Title
Decentralized Federated Learning with Node Incentive and Role Switching Mechanism for Network Traffic Prediction in NFV Environment
Publication title
Symmetry; Basel
Volume
17
Issue
6
First page
970
Number of pages
27
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-18
Milestone dates
2025-04-28 (Received); 2025-06-16 (Accepted)
Publication history
 
 
   First posting date
18 Jun 2025
ProQuest document ID
3223942794
Document URL
https://www.proquest.com/scholarly-journals/decentralized-federated-learning-with-node/docview/3223942794/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-10
Database
ProQuest One Academic