It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Developing new cultivars, particularly in perennial species like Coffea arabica , can be a time-consuming process. Employing molecular markers in genome-wide selection (GWS) for predicting genetic values offers an alternative to accelerate this process. However, implementing GWS typically involves genotyping many markers for both training and candidate individuals, which can increase the total genotyping cost for the breeding program. Therefore, this study aimed to assess the feasibility of using low-density marker panels to predict the genetic merit of C. arabica for a range of desirable agronomic traits. For this purpose, GWS analyses were performed using the G-BLUP method with panels of varying marker densities, selected based on marker effect magnitude. The results indicate that employing lower-density panels might be advantageous for this species' improvement. Models based on these panels yielded accurate predictions for various traits and demonstrated high agreement in terms of selected individuals compared to more complex models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer