Content area

Abstract

This study introduces a machine vision technique that utilizes an artificial neural network (ANN) to develop a predictive model for classifying dried grapes during the drying process. The primary objective of this model is to mitigate the burden placed on the operator and minimize the occurrence of over-dried items. The present study involves the development of a model that is constructed using the characteristics of grape color and shape. There exist two distinct categories of labels for grapes: fully desiccated grapes, commonly referred to as raisins, and grapes that have undergone partial drying. Image processing is utilized to collect and observe five significant characteristics of grapes during the drying process. The findings indicate a significant decrease in the levels of red, green, and blue colors (RGB) during the initial 15-hour drying period. The predictive model extracts properties such as RGB color, roundness, and shrinkage from the image while it undergoes the drying process. The artificial neural network (ANN) model achieved a level of accuracy performance of 78%. In this work, the dehydration apparatus will cease operation in an automated manner whenever the entirety of the grapes situated on the tray has been projected to transform raisins.

Alternate abstract:

Ovaj rad uvodi tehniku obrade slike koja koristi veštačku neuronsku mrežu (ANN) za razvoj prediktivnog modela za klasifikaciju suvog grožða tokom procesa sušenja. Primarni cilj ovog modela je da se ublaži teret koji se stavlja na operatera i minimizira pojavu previše osušenih grozdova. Ova studija podrazumeva razvoj modela koji se konstruiše korišćenjem karakteristika boje i oblika grožða. Postoje dve različite kategorije za grožðe: potpuno isušeno grožðe, koje se obično naziva suvo grožðe, i grožðe koje je podvrgnuto delimičnom sušenju. Obrada slike se koristi za prikupljanje i posmatranje pet značajnih karakteristika grožða tokom procesa sušenja. Nalazi ukazuju na značajno smanjenje nivoa crvene, zelene i plave boje (RGB) tokom početnog perioda sušenja od 15 sati. Prediktivni model izdvaja svojstva, kao što su RGB boja, zaobljenost i skupljanje iz slike, dok se grožðe podvrgava procesu sušenja. Model veštačke neuronske mreže (ANN) postigao je nivo tačnosti od 78%. U ovom radu, aparat za dehidraciju cé automatski prestati sa radom kad god se planira da celokupno grožðe na tacni preobrazi u suvo grožðe.

Details

1009240
Company / organization
Title
UTILIZING MACHINE VISION AND ARTIFICIAL NEURAL NETWORKS FOR DRIED GRAPE SORTING DURING PRODUCTION
Alternate title
KORIŠĆENJE OBRADE SLIKE I VEŠTAČKIH NEURALNIH MREŽA ZA SORTIRANJE SUŠENOG GROŽÐA TOKOM PROIZVODNJE
Author
Ruangurai, Piyanun 1 ; Tanasansurapong, Nattabut 1 ; Prasitsanha, Sirakupt 1 ; Bunchan, Rewat 1 ; Tuvayanond, Wiput 2 ; Haval, Thana Chotchuangchutc; Silawatchananai, Chaiyaporn

 College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand 
 Industry Agricultural Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand 
Volume
31
Issue
3
Pages
219-227
Number of pages
10
Publication year
2025
Publication date
Jul-Sep 2025
Publisher
Association of the Chemical Engineers of Serbia
Place of publication
Belgrade
Country of publication
Serbia
ISSN
14519372
e-ISSN
22177434
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3225548037
Document URL
https://www.proquest.com/scholarly-journals/utilizing-machine-vision-artificial-neural/docview/3225548037/se-2?accountid=208611
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-22
Database
ProQuest One Academic