Content area

Abstract

We consider the problem of computing a sparse binary representation of an image. Given an image and an overcomplete, non-orthonormal basis, we aim to find a sparse binary vector indicating the minimal set of basis vectors that when added together best reconstruct the given input. We formulate this problem with an L2 loss on the reconstruction error, and an L0 loss on the binary vector enforcing sparsity. First, we solve the sparse representation QUBOs by solving them both on a D-Wave quantum annealer with Pegasus chip connectivity, as well as on the Intel Loihi 2 spiking neuromorphic processor using a stochastic Non-equilibrium Boltzmann Machine (NEBM). Second, using Quantum Evolution Monte Carlo with Reverse Annealing and iterated warm starting on Loihi 2 to evolve the solution quality from the respective machines. We demonstrate that both quantum annealing and neuromorphic computing are suitable for solving binary sparse coding QUBOs.

Details

1009240
Business indexing term
Title
Comparing quantum annealing and spiking neuromorphic computing for sampling binary sparse coding QUBO problems
Author
Henke, Kyle 1 ; Pelofske, Elijah 1 ; Kenyon, Garrett 1 ; Hahn, Georg 2 

 Information Sciences, Los Alamos National Laboratory, Los Alamos, US (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 T.H. Chan School of Public Health, Harvard University, Boston, US (GRID:grid.189504.1) (ISNI:0000 0004 1936 7558) 
Publication title
Volume
2
Issue
1
Pages
13
Publication year
2025
Publication date
Dec 2025
Publisher
Nature Publishing Group
Place of publication
London
Country of publication
United States
Publication subject
e-ISSN
30048672
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-04
Milestone dates
2025-04-03 (Registration); 2024-05-31 (Received); 2025-04-03 (Accepted)
Publication history
 
 
   First posting date
04 Jun 2025
ProQuest document ID
3225863099
Document URL
https://www.proquest.com/scholarly-journals/comparing-quantum-annealing-spiking-neuromorphic/docview/3225863099/se-2?accountid=208611
Copyright
Copyright Nature Publishing Group Dec 2025
Last updated
2025-07-01
Database
ProQuest One Academic