Content area

Abstract

Predicting potential drug-drug interactions (DDIs) from biomedical data plays a critical role in drug therapy, drug development, drug regulation, and public health. However, it remains challenging due to the large number of possible drug combinations, and multimodal biomedical data, which is disorder, imbalanced, more prone to linguistic errors, and difficult to label. A Semantic Cross-Attention Transformer (SCAT) model is constructed to address the above challenge. In the model, BioBERT, Doc2Vec and graph convolutional network are utilized to embed the multimodal biomedical data into vector representation, BiGRU is adopted to capture contextual dependencies in both forward and backward directions, Cross-Attention is employed to integrate the extracted features and explicitly model dependencies between them, and a feature-joint classifier is adopted to implement DDI predication (DDIP). The experiment results on the DDIExtraction-2013 dataset demonstrate that SCAT outperforms the state-of-the-art DDIP approaches. SCAT expands the application of multimodal deep learning in the field of multimodal DDIP, and can be applied to drug regulation systems to predict novel DDIs and DDI-related events.

Details

1009240
Title
SCATrans: semantic cross-attention transformer for drug–drug interaction predication through multimodal biomedical data
Publication title
Volume
26
Pages
1-20
Number of pages
21
Publication year
2025
Publication date
2025
Section
Research
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
Publication subject
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-10
Milestone dates
2025-01-14 (Received); 2025-05-12 (Accepted); 2025-06-10 (Published)
Publication history
 
 
   First posting date
10 Jun 2025
ProQuest document ID
3227640464
Document URL
https://www.proquest.com/scholarly-journals/scatrans-semantic-cross-attention-transformer/docview/3227640464/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-11
Database
ProQuest One Academic