Content area

Abstract

Background

Digital transformation in pathology education faces three bottlenecks: fragmented knowledge transfer, low morphological diagnostic accuracy, and weak clinical reasoning. While knowledge graphs (KGs) offer potential solutions, existing medical KG lack multimodal integration and competency assessment. We designed an integrated Multimodal Knowledge Graph (MKG) with O-PIRTAS pedagogy to bridge these gaps.

Methods

Following Design Science Research Methodology, we built a pathology-specific MKG featuring: (1) Semantic modeling of disease mechanisms (etiology-pathogenesis-morphology-clinical), (2) Cross-modal alignment of digital slides/animations/clinical cases, (3) Embedded metrics (KII/MDA/CCAE) for competency quantification. A quasi-experiment with 533 medical students (2022 cohort control: n = 275; 2023 MKG-O-PIRTAS: n = 258) evaluated outcomes via exam scores, validated questionnaires, and stratified interviews.

Results

The MKG-O-PIRTAS group achieved significantly higher adjusted exam scores (76.14 vs. 73.72, p = 0.033) and 86% lower misdiagnosis rate in high performers (p = 0.015). Cognitive load diverged markedly (57.5 vs. 75.5, p = 0.007), with high performers dynamically contextualizing MKG nodes into clinical reasoning, while novices required scaffolded pathways. Over 80% of students endorsed enhanced knowledge integration and process optimization.

Conclusion

The MKG-O-PIRTAS artifact transforms scattered pathology knowledge into actionable clinical reasoning scaffolds, proving effective for personalized competency development. Future work will scale adaptive scaffolding and integrate real-time EMR modules, establishing a replicable paradigm for medical education intelligence.

Details

1009240
Business indexing term
Title
Research on the construction and application of pathology knowledge graph
Publication title
Volume
25
Pages
1-11
Number of pages
12
Publication year
2025
Publication date
2025
Section
Research
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
e-ISSN
14726920
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-01
Milestone dates
2024-11-25 (Received); 2025-06-18 (Accepted); 2025-07-01 (Published)
Publication history
 
 
   First posting date
01 Jul 2025
ProQuest document ID
3227642776
Document URL
https://www.proquest.com/scholarly-journals/research-on-construction-application-pathology/docview/3227642776/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-19
Database
ProQuest One Academic