It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
To improve the prediction of immune checkpoint inhibitors (ICIs) efficacy in hepatocellular carcinoma (HCC), this study categorized the tumor immune microenvironment (TIME) into two types: immune-activated (IA), characterized by a high CD8 + score and high PD-L1 combined positive score (CPS), and non-immune-activated (NIA), encompassing all other conditions. We aimed to develop an MRI-based radiomics model to predict TIME types and validate its predictive capability for ICIs efficacy in HCC patients receiving anti-PD-1/PD-L1 therapy.
Methods
The study included 200 HCC patients who underwent preoperative/pretreatment multiparametric contrast-enhanced MRI (Cohort 1: 168 HCC patients with hepatectomy from two centres; Cohort 2: 42 advanced HCC patients on anti-PD-1/PD-L1 therapy). In Cohort 1, after feature selection, clinical, intratumoral radiomics, peritumoral radiomics, combined radiomics, and clinical-radiomics models were established using machine learning algorithms. In cohort 2, the clinical-radiomics model’s predictive ability for ICIs efficacy was assessed.
Results
In Cohort 1, the AUC values for intratumoral, peritumoral, and combined radiomics models were 0.825, 0.809, and 0.868, respectively, in the internal validation set, and 0.73, 0.759, and 0.822 in the external validation set; the clinical-radiomics model incorporating neutrophil-to-lymphocyte ratio, tumor size, and combined radiomics score achieved an AUC of 0.887 in the internal validation set, outperforming clinical model (P = 0.049), and an AUC of 0.837 in the external validation set. In cohort 2, the clinical-radiomics model stratified patients into low- and high-score groups, demonstrating a significant difference in objective response rate (p = 0.003) and progression-free survival (p = 0.031).
Conclusions
The clinical-radiomics model is effective in predicting TIME types and efficacy of ICIs in HCC, potentially aiding in treatment decision-making.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer