It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The Stimulator of Interferon Genes (STING) pathway is pivotal in innate immunity, facilitating the detection of cytosolic DNA and initiating type I interferon-dependent responses. In addition to its immunological roles, STING has been increasingly associated with metabolic regulation, since research indicates that its inhibition can diminish inflammation, lipid accumulation, and tissue damage in obesity and other metabolic disorders. The findings have prompted the suggestion of STING inhibition as a viable treatment approach for metabolic illness. Nonetheless, the physiological function of STING in lipid homeostasis under normal settings remains largely unexplored, as does the impact of its absence on metabolism throughout various life stages in the absence of disease. This information deficit is crucial, particularly in light of the increasing interest in the long-term pharmacological suppression of STING.
Results
To examine the function of STING in lipid metabolism during physiological, non-pathological conditions throughout the lifespan, we assessed WT and STINGKO mice at various ages and discovered that STING deficiency results in a consistent increase in body weight, independent of alterations in locomotor activity or food consumption. STINGKO mice exhibited markedly increased circulation levels of triglycerides and total cholesterol. Histological and morphological analysis demonstrated augmented fat accumulation in adipose and hepatic tissues, despite the lack of nutritional or genetic metabolic stress. These findings indicate a crucial function for STING in the control of lipid homeostasis across the lifespan.
Conclusions
In contrast to earlier research conducted under pathological conditions, our findings indicate that the total absence of STING expression in healthy contexts leads to heightened lipid accumulation in tissues and blood. These findings underscore an unforeseen function of STING as a modulator of lipid metabolism in the context of longevity. They caution against the prolonged use of STING inhibitors, as chronic STING suppression may lead to detrimental metabolic effects. This study offers new insights into the non-immune roles of STING, indicating its significance in preserving metabolic equilibrium throughout the lifetime.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer