Abstract
This study examines the impact of the COVID-19 lockdown on China’s restaurant industry, a critical contributor to national GDP and employment. Using a large-scale dataset of 14,488,951 restaurant-year observations covering 5,560,345 unique restaurants across 301 cities (2020–2023), we employ the Cox proportional hazard model to examine how lockdown influences restaurant closure. We find that each additional 12 days of local lockdown increases the closure risk by 12.7%. While most restaurants face elevated risks, those with higher star ratings are more resilient. Chain restaurants, older establishments, higher-priced venues, and those offering unique cuisines or located near commercial hubs and transit stations are less likely to close. In contrast, newer, independent, lower-priced restaurants, especially those offering common cuisines, providing delivery, or located in less accessible areas, are more vulnerable. These findings highlight the uneven impact of lockdowns across restaurant types and locations and point to the key factors that support restaurant resilience during disruptions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Nottingham Ningbo China, Ningbo, China (GRID:grid.50971.3a) (ISNI:0000 0000 8947 0594)
2 Hong Kong Polytechnic University, Hong Kong, China (GRID:grid.16890.36) (ISNI:0000 0004 1764 6123)
3 University of Surrey, Guildford, UK (GRID:grid.5475.3) (ISNI:0000 0004 0407 4824)




