Content area

Abstract

The major component of the cryogenic turboexpander is the radial inflow turbine; thus, improvements in its design and performance are effective for the system. The inspirations of six design parameters, including velocity ratio, inlet and outlet impeller diameters, mass flow rate, and blade height, are examined in the context of the total-to-static efficiency of the RIT turbine cryogenic turboexpander. A 1-D design of the radial-inflow turbine has been implemented through MATLAB 2020. In this paper, A novel artificial intelligence system slime mould algorithm (SMA) was employed for the numerical optimization of RIT through MATLAB 2020. An innovative MATLAB script was created for this optimization. The parameters of mass flow rate, number of blades, and blade angles were varied in a constrained range for optimization. This paper explores five distinct blade scenarios for design and numerical optimization processes through MATLAB 2020. The optimization of radial inflow turbines will require the development of a greater capacity of the cryogenic liquefaction system. The performance measurement of the radial inflow turbine was done based on total-to-static efficiency. In numerical optimization, the selection of blades in the range of 11–15 resulted in an improvement in the total-to-static efficiency by around 1.46 %, specifically for 13 blades. This enhancement represents a significant 5.0 % improvement over the results presented in the ANN model explored in the available literature. The maximum total-to-static efficiency achieved through SMA optimization is 89.94 % for 15 blades.

Details

Title
Numerical Optimization of a Radial Inflow Turbine Based on a Loss Model of a Cryogenic Turboexpander Using the Slime Mould Algorithm
Publication title
Volume
75
Issue
4
Pages
512-519
Number of pages
9
Publication year
2025
Publication date
2025
Section
Technology Management
Publisher
Defence Scientific Information & Documentation Centre
Place of publication
New Delhi
Country of publication
India
ISSN
0011748X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-26
Milestone dates
2025-06-26 (Issued); 2024-01-16 (Submitted); 2025-06-26 (Created); 2025-06-26 (Modified)
Publication history
 
 
   First posting date
26 Jun 2025
ProQuest document ID
3228704843
Document URL
https://www.proquest.com/scholarly-journals/numerical-optimization-radial-inflow-turbine/docview/3228704843/se-2?accountid=208611
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/2.5/in (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-14
Database
ProQuest One Academic