It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The coastal area of New Hanover County in North Carolina encompasses diverse wetland habitats influenced by unique coastal and tidal dynamics, with researchers examining the impacts of landscape changes, sea-level rise, and climate fluctuations on wetland health and biodiversity. This study integrates multispectral imagery data, LiDAR, and additional sources to enhance classification accuracy. The study also addresses binary classification for wetland and non-wetland classification and a multi-classification for different wetland classes, leveraging on the Random Forest algorithm which significantly improved the overall accuracy of wetland mapping. The Random Forest model’s performance in different scenarios was evaluated, with Scenario 1 achieving an overall accuracy of nearly 93.9%, Scenario 2 achieving an overall accuracy of 93.5%, Scenario 3 achieving an overall accuracy of 94.1%, and Scenario 4 achieving an overall accuracy of 88.2%. These results underscore the model’s effectiveness in accurately classifying coastal wetland areas under diverse remote sensing scenarios, highlighting its potential for practical applications in wetland mapping and ecological research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Built Environment, North Carolina A&T State University, 1601 E Market St, Greensboro, NC, USA; Department of Built Environment, North Carolina A&T State University, 1601 E Market St, Greensboro, NC, USA





