Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a vision-based framework to support AVs in maintaining stable lane-keeping by assessing the condition of lane markings. Unlike existing infrastructure standards focused on human visibility, this study addresses the need for criteria suited to sensor-based AV environments. Using real driving data from urban expressways in Seoul, a YOLOv5-based lane detection algorithm was developed and enhanced through multi-label annotation and data augmentation. The model achieved a mean average precision (mAP) of 97.4% and demonstrated strong generalization on external datasets such as KITTI and TuSimple. For lane condition assessment, a pixel occupancy–based method was applied, combined with Canny edge detection and morphological operations. A threshold of 80-pixel occupancy was used to classify lanes as intact or worn. The proposed framework reliably detected lane degradation under various road and lighting conditions. These results suggest that quantitative, image-based indicators can complement traditional standards and guide AV-oriented infrastructure policy. Limitations include a lack of adverse weather data and dataset-specific threshold sensitivity.

Details

Title
The Development of a Lane Identification and Assessment Framework for Maintenance Using AI Technology †
Author
Hohyuk, Na 1   VIAFID ORCID Logo  ; Kim Do Gyeong 2   VIAFID ORCID Logo  ; Kang, Ji Min 1 ; Lee, Chungwon 3 

 Department of Transportation Engineering, University of Seoul, Seoul 02504, Republic of Korea 
 Department of Transportation Engineering, University of Seoul, Seoul 02504, Republic of Korea, Department of Urban Big Data Convergence, Graduate School, University of Seoul, Seoul 02504, Republic of Korea 
 Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea 
First page
7410
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229140218
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.