Content area

Abstract

The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework. Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to complete), completion time (the actual time at which a job is finished), and efficiency (the performance of executing a single job). By leveraging neural networks, Pathfinder extracts essential features from these matrices, enabling intelligent decision-making in dynamic production environments. Unlike traditional approaches with fixed scheduling rules, Pathfinder dynamically selects from ten diverse scheduling rules, optimizing decisions based on real-time environmental conditions. To further enhance scheduling efficiency, a specialized reward function is designed to support dynamic task allocation and real-time adjustments. This function helps Pathfinder continuously refine its scheduling strategy, improving machine utilization and minimizing job completion times. Through reinforcement learning, Pathfinder adapts to evolving production demands, ensuring robust performance in real-world applications. Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches, offering improved coordination and efficiency in smart factories. By integrating deep reinforcement learning, adaptable scheduling strategies, and an innovative reward function, Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments.

Details

1009240
Title
Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization
Publication title
Volume
84
Issue
2
Pages
3371-3391
Number of pages
22
Publication year
2025
Publication date
2025
Section
ARTICLE
Publisher
Tech Science Press
Place of publication
Henderson
Country of publication
United States
Publication subject
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-03
Milestone dates
2025-03-05 (Received); 2025-05-15 (Accepted)
Publication history
 
 
   First posting date
03 Jul 2025
ProQuest document ID
3229497756
Document URL
https://www.proquest.com/scholarly-journals/pathfinder-deep-reinforcement-learning-based/docview/3229497756/se-2?accountid=208611
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-16
Database
ProQuest One Academic