Full text

Turn on search term navigation

© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose: This study aimed to characterize the pharmacokinetics/pharmacodynamics (PK/PD) of remimazolam in patients under general anesthesia using a population analysis and to develop a web-based dashboard tool that directly displays the optimal dosing regimen for general anesthesia.

Patients and Methods: A total of 20 patients received remimazolam for general anesthesia, during which intensive arterial blood samples and bispectral index (BIS) values were collected. A population PK/PD model was established, and goodness-of-fit and visual predictive check plots were utilized to evaluate the model’s accuracy. Additionally, RxODE and Shiny in R were used to design a web-based dashboard tool to recommend optimal dosing regimens.

Results: The three-compartment model with first elimination best described the PK profiles of remimazolam. PK parameters were weight-adjusted via allometric scaling. The correlation between drug exposure and the BIS was optimally characterized through an effect compartment model employing an inhibitory sigmoid Emax model. In addition, a web-based dashboard tool was created to offer initial personalized dosing strategies for general anesthesia procedures, enhanced by graphical representations of the PK/PD profiles associated with the recommended dosing regimens.

Conclusion: The developed population PK/PD model effectively captured the dose-exposure-response relationship for remimazolam, allowing for the optimization of personalized dosing strategies.

Details

Title
Model-Informed Precision Dosing of Remimazolam in General Anesthesia Patients
Author
Chen, Y; Zhang, Z J; Zhang, X F; Peng, Y; Jiao, Z; Wu, J X  VIAFID ORCID Logo 
Pages
5099-5109
Section
Original Research
Publication year
2025
Publication date
2025
Publisher
Taylor & Francis Ltd.
e-ISSN
1177-8881
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3230219727
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.