Content area

Abstract

Cell-free DNA (cfDNA) is increasingly studied for its diverse applications in non-invasive detection. Non-randomly cleaved by nucleases and released into the bloodstream, cfDNA exhibits a variety of intrinsic fragmentation patterns indicative of cell status. Particularly, these fragmentation patterns have recently been demonstrated to be effective in predicting cancer and its tissue-of-origin, owing to increased variation of fragmentation features observed in tumor patients. However, there remains a lack of detailed exploration of altered cfDNA fragmentation profiles in tumors, which consist of a mixture of both non-tumor cfDNA and circulating tumor DNA (ctDNA). Hence, we leveraged the human tumor cell line-derived xenograft (CDX) mouse model, where different tumor cell lines were implanted into different anatomical sites, to isolate pure ctDNA and separately investigate the fragment properties of CDX-cfDNA and ctDNA. We found an enrichment of short cfDNA fragments in both CDX-cfDNA and ctDNA compared to normal plasma cfDNA, with more elevated short fragments in ctDNA. Moreover, the CDX-cfDNA fragmentation features distinguished between CDX models of different tumor cell lines, while the ctDNA fragmentation features conversely discriminate between CDX models of different anatomical sites. The results suggested that both non-tumor cfDNA and ctDNA contribute to the increased variation observed in tumors, and that cfDNA fragmentation may be highly variable and susceptible to regulations by both original cells and cells within the local niche.

Details

1009240
Title
Dissecting cell-free DNA fragmentation variation in tumors using cell line-derived xenograft mouse
Publication title
PLoS One; San Francisco
Volume
20
Issue
7
First page
e0327483
Number of pages
15
Publication year
2025
Publication date
Jul 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-08-13 (Received); 2025-06-16 (Accepted); 2025-07-15 (Published)
ProQuest document ID
3230449901
Document URL
https://www.proquest.com/scholarly-journals/dissecting-cell-free-dna-fragmentation-variation/docview/3230449901/se-2?accountid=208611
Copyright
© 2025 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-16
Database
ProQuest One Academic