Content area

Abstract

Classifying Electroencephalogram (EEG) signals for wheelchair navigation presents significant challenges due to high dimensionality, noise, outliers, and class imbalances. This study proposes an optimized classification framework that evaluates ten machine learning (ML) models, emphasizing ensemble methods, feature selection (FS), and outlier utilization. The dataset, comprising 2869 samples and 141 features, was processed using Recursive Feature Elimination (RFE) and correlation thresholds (CTs), achieving a peak accuracy of 69% with Extra Trees after FS. Notably, training on outlier-only data yielded even higher accuracy (Extra Trees: 82%), underscoring the value of outliers in enhancing class separability. Receiver Operating Characteristic–Precision Recall (ROC-PR) curve analysis confirmed that Extra Trees achieved a ROC AUC (Area Under Curve) of 0.92 and PR AUC of 0.82 for the best-classified movement command, while other models exhibited lower precision-recall (PR) balance. This approach, complemented by explainability techniques, offers a robust solution for EEG-based wheelchair control systems and paves the way for interpretable brain-computer interfaces (BCIs).

Details

1009240
Business indexing term
Title
Optimization of EEG-based wheelchair control: machine learning, feature selection, outlier management, and explainable AI
Author
Hamed, Amr M. 1 ; Attia, Abdel-Fattah 1 ; El-Behery, Heba 1 

 Kafrelsheikh University, Department of Computer Engineering and Systems, Faculty of Engineering, Kafrelsheikh, Egypt (GRID:grid.411978.2) (ISNI:0000 0004 0578 3577) 
Publication title
Volume
12
Issue
1
Pages
175
Publication year
2025
Publication date
Jul 2025
Publisher
Springer Nature B.V.
Place of publication
Heidelberg
Country of publication
Netherlands
e-ISSN
21961115
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-17
Milestone dates
2025-06-30 (Registration); 2025-03-12 (Received); 2025-06-30 (Accepted)
Publication history
 
 
   First posting date
17 Jul 2025
ProQuest document ID
3231080090
Document URL
https://www.proquest.com/scholarly-journals/optimization-eeg-based-wheelchair-control-machine/docview/3231080090/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-01
Database
ProQuest One Academic