Content area

Abstract

This study introduces a novel approach to post-processing (i.e. downscaling and bias-correcting) reanalysis-driven regional climate model daily precipitation outputs that can be generalised to ungauged mountain locations by leveraging sparse in situ observations and a probabilistic regression framework. We call this post-processing approach generalised probabilistic regression (GPR) and implement it using both generalised linear models and artificial neural networks (i.e. multi-layer perceptrons). By testing the GPR post-processing approach across three Hindu Kush Himalaya (HKH) basins with varying hydro-meteorological characteristics and four experiments, which are representative of real-world scenarios, we find it performs consistently much better than both raw regional climate model output and deterministic bias correction methods for generalising daily precipitation post-processing to ungauged locations. We also find that GPR models are flexible and can be trained using data from a single region or multiple regions combined together, without major impacts on model performance. Additionally, we show that the GPR approach results in superior skill for post-processing entirely ungauged regions, by leveraging data from other regions as well as ungauged high-elevation ranges. This suggests that GPR models have potential for extending post-processing of daily precipitation to ungauged areas of HKH. Whilst multi-layer perceptrons yield marginally improved results overall, generalised linear models are a robust choice, particularly for data-scarce scenarios, i.e. post-processing extreme precipitation events and generalising to completely ungauged regions.

Details

Location
Title
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Author
Girona-Mata, Marc 1   VIAFID ORCID Logo  ; Orr, Andrew 2 ; Widmann, Martin 3   VIAFID ORCID Logo  ; Bannister, Daniel 4   VIAFID ORCID Logo  ; Ghulam Hussain Dars 5   VIAFID ORCID Logo  ; Hosking, Scott 6   VIAFID ORCID Logo  ; Norris, Jesse 7 ; Ocio, David 8   VIAFID ORCID Logo  ; Phillips, Tony 2 ; Steiner, Jakob 9   VIAFID ORCID Logo  ; Turner, Richard E 10 

 British Antarctic Survey, UK Research and Innovation, Cambridge, UK; Department of Engineering, University of Cambridge, Cambridge, UK 
 British Antarctic Survey, UK Research and Innovation, Cambridge, UK 
 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK 
 WTW Research Network, WTW, London, UK 
 U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Pakistan 
 British Antarctic Survey, UK Research and Innovation, Cambridge, UK; The Alan Turing Institute, London, UK 
 Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA 
 Mott MacDonald, Cambridge, UK 
 Institute of Geography and Regional Science, University of Graz, Graz, Austria; Himalayan University Consortium, Lalitpur, Nepal 
10  Department of Engineering, University of Cambridge, Cambridge, UK 
Publication title
Volume
29
Issue
14
Pages
3073-3100
Publication year
2025
Publication date
2025
Publisher
Copernicus GmbH
Place of publication
Katlenburg-Lindau
Country of publication
Germany
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-09-06 (Received); 2024-10-07 (Revision request); 2025-04-12 (Revision received); 2025-04-16 (Accepted)
ProQuest document ID
3231831022
Document URL
https://www.proquest.com/scholarly-journals/probabilistic-precipitation-downscaling-ungauged/docview/3231831022/se-2?accountid=208611
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-21