Content area

Abstract

Flies, especially those from the Calliphoridae family, play a crucial role in decomposition and are the first to colonize a cadaver. Firstly, accurate species identification is a prerequisite for entomological evidence-based calculation of postmortem interval (PMI). While morphological criteria for identifying the species of adult blow flies exist, there are either absent or inadequate keys for younger stages. In all phases of blow fly development, molecular identification offers a quick and accurate procedure. It is widely known that mitochondrial cytochrome oxidase subunit I has the capacity for molecular identification but is ineffective in certain species. This study was conducted to assess the effectiveness of the cytochrome oxidase 1 gene in the identification of seventeen different species of calliphorid flies involving four genera, Calliphora, Chrysomya, Lucilia, and Hemipyrellia. In West Bengal, 2,977 blow fly specimens were gathered from four distinct geo-climatic zones. COI barcodes were able to confirm morphological identification through low K2P intraspecific genetic divergences (0% to 1%) and moderate to high K2P interspecific genetic divergences (0.39% to 12.29%). The Neighbour-Joining (NJ) analysis demonstrated well-supported reciprocal monophyly among the species. The species grouping was in agreement with morphological and molecular identifications. The four delimitation methods, BIN, ASAP, PTP, and GMYC, used for species identification produced similar results and facilitated the proper identification of species. Therefore, it can be concluded that COI barcodes are a highly successful alternative for the molecular identification of blow flies, facilitating forensic cases and biodiversity research in India.

Details

1009240
Taxonomic term
Title
Molecular identification and genetic variations of forensically significant blow flies (Diptera: Calliphoridae) from Eastern India using DNA barcoding
Publication title
PLoS One; San Francisco
Volume
20
Issue
7
First page
e0327039
Number of pages
22
Publication year
2025
Publication date
Jul 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-12-23 (Received); 2025-06-09 (Accepted); 2025-07-22 (Published)
ProQuest document ID
3232443057
Document URL
https://www.proquest.com/scholarly-journals/molecular-identification-genetic-variations/docview/3232443057/se-2?accountid=208611
Copyright
© 2025 Kar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-23
Database
ProQuest One Academic