It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Adversarial Attacks are actions that aims to mislead models by introducing subtle and often imperceptible changes in model’s input. Providing resilience for such kind of risk is key for all Natural Language Processing (NLP) task specific models. Current state of the art solution for one of NLP task Named Entity Recognition (NER) is usage of transformer based solutions. Previous solution where based on Conditional Random Fields (CRF).This research aims to investigate and compare the robustness of both transformer-based and CRF-based NER models against adversarial attacks. By subjecting these models to carefully crafted perturbations, we seek to understand how well they can withstand attempts to manipulate their input and compromise their performance. This comparative analysis will provide valuable insights into the strengths and weaknesses of each architecture, shedding light on the most effective strategies for enhancing the security and reliability of NER systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





