Content area

Abstract

This paper studies the existence, regularity, and properties of normalized ground state solutions for the mixed fractional Schrödinger equations. For subcritical cases, we establish the boundedness and Sobolev regularity of solutions, derive Pohozaev identities, and prove the existence of radial, decreasing ground states, while showing nonexistence in the L2-critical case. For L2-supercritical exponents, we identify parameter regimes where ground states exist, characterized by a negative Lagrange multiplier. The analysis combines variational methods, scaling techniques, and the careful study of fibering maps to address challenges posed by competing nonlinearities and nonlocal interactions.

Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.