Content area

Abstract

A new concept of a 3D volumetric module, made up of six plane stiffened self-compacting fiber-reinforced concrete (SFRC) panels, is here studied. Experimental campaigns are carried out on SFRC material and on the thin-slab structures used for this modular concept. The high volume of steel fibers (80 kg/m3) used in the formulation of this concrete allow a positive strain hardening to be obtained in the post-cracking regime observed on the bending characterization tests. The high mechanical material characteristics, obtained both in tension and compression, allow a significant decrease in the module slabs’ thickness. The tests carried out on the 7 cm thick slab demonstrate a high load-bearing capacity and ductility under bending loading; this is also the case for shear loading configuration, although without any shear reinforcements. Numerical simulations of the material mechanical tests were conducted using Abaqus code; the results corroborate the experimental findings. Then, simulations were also conducted at the structural level, mainly to evaluate the behavior and the bearing capacity of the thin 3D module stiffened slabs. Finally, knowing that the concrete module truck transport can be a weak point, the decelerations induced during transportation were characterized and the integrity of the largest 3D module was demonstrated.

Details

1009240
Business indexing term
Location
Title
3D Modular Construction Made of Precast SFRC-Stiffened Panels
Author
Sawadogo Sannem Ahmed Salim Landry 1   VIAFID ORCID Logo  ; Tan-Trung, Bui 1   VIAFID ORCID Logo  ; Bennani Abdelkrim 2   VIAFID ORCID Logo  ; Al Galib Dhafar 3   VIAFID ORCID Logo  ; Reynaud Pascal 1 ; Limam Ali 4 

 MATEIS, CNRS, INSA-Lyon, University of Lyon, UMR 5510, F-69100 Villeurbanne, France; [email protected] (S.A.S.L.S.); [email protected] (P.R.); [email protected] (A.L.) 
 InPACT Institute, HEPIA Geneva, University of Applied Sciences Western Switzerland, 1202 Geneva, Switzerland; [email protected] 
 URGC Structure, INSA de Lyon, Bât. Joseph Charles Augustin Coulomb, F-69100 Villeurbanne, France; [email protected] 
 MATEIS, CNRS, INSA-Lyon, University of Lyon, UMR 5510, F-69100 Villeurbanne, France; [email protected] (S.A.S.L.S.); [email protected] (P.R.); [email protected] (A.L.), EST of Salé, Materials, Energy and Acoustics Team (MEAT), Mohammed V University in Rabat, Salé 11000, Morocco 
Publication title
Volume
10
Issue
7
First page
176
Number of pages
34
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
24123811
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-07
Milestone dates
2025-06-06 (Received); 2025-07-04 (Accepted)
Publication history
 
 
   First posting date
07 Jul 2025
ProQuest document ID
3233222342
Document URL
https://www.proquest.com/scholarly-journals/3d-modular-construction-made-precast-sfrc/docview/3233222342/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-25
Database
ProQuest One Academic