Content area

Abstract

Injection molding is a fundamental process for transforming plastics into various industrial components. Among the critical aspects studied in this process, volumetric contraction and warpage of plastic parts are of particular importance. Achieving precise control over warpage is crucial for ensuring the production of high-quality components. This research explores optimizing injection process parameters to minimize volumetric contraction and warpage in rectangular polypropylene (PP) parts. The study employs experimental analysis, MoldFlow simulation, and Artificial Neural Network (ANN) modeling. MoldFlow simulation software provides valuable data on warpage, serving as input for the ANN model. Based on the Backpropagation Neural Network algorithm, the optimized ANN model accurately predicts warpage by considering factors such as part thickness, flow path distance, and flow path tangent. The study highlights the importance of accurately setting injection parameters to achieve optimal warpage results. The BPNN-based approach offers a faster and more efficient alternative to computer-aided engineering (CAE) processes for studying warpage.

Details

1009240
Title
Predictive ANN Modeling and Optimization of Injection Molding Parameters to Minimize Warpage in Polypropylene Rectangular Parts
Author
Gámez, Juan Luis 1   VIAFID ORCID Logo  ; Jordá-Vilaplana Amparo 2 ; Peydro Miguel Angel 3   VIAFID ORCID Logo  ; Selles, Miguel Angel 3   VIAFID ORCID Logo  ; Sanchez-Caballero, Samuel 4   VIAFID ORCID Logo 

 Departamento de Ingeniería Gráfica, Universidad de Alicante, 03690 Sant Vicent del Raspeig, Spain; [email protected] 
 Departamento de Ingeniería Gráfica, Universitat Politècnica de València, 03801 Alcoy, Spain; [email protected] 
 Instituto Universitario de Investigación de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy, Spain; [email protected] 
 Instituto de Diseño para la Fabricación y Producción Automatizada, Universitat Politècnica de València, 03801 Alcoy, Spain; [email protected] 
Volume
9
Issue
7
First page
236
Number of pages
17
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25044494
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-09
Milestone dates
2025-05-02 (Received); 2025-07-03 (Accepted)
Publication history
 
 
   First posting date
09 Jul 2025
ProQuest document ID
3233227516
Document URL
https://www.proquest.com/scholarly-journals/predictive-ann-modeling-optimization-injection/docview/3233227516/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-25
Database
ProQuest One Academic