Content area

Abstract

Non-unique fixed-point theorems play a pivotal role in the mathematical modeling to solve certain typical equations, which admit more than one solution. In such situations, traditional outcomes fail due to uniqueness of fixed points. The primary aim of the present article is to investigate a non-unique fixed-point theorem in the framework of a metric space endowed with a local class of transitive binary relations. To obtain our main objective, we introduce a new nonlinear contraction-inequality that subsumes the ideas involved in four noted contraction conditions, namely: almost contraction, Boyd–Wong contraction, Pant contraction and relational contraction. We also establish the corresponding uniqueness theorem for the proposed contraction under some additional hypotheses. Several examples are furnished to illustrate the legitimacy of our newly proved results. In particular, we deduce a fixed-point theorem for almost Boyd–Wong contractions in the setting of abstract metric space. Our results generalize, enhance, expand, consolidate and develop a number of known results existing in the literature. The practical relevance of the theoretical findings is demonstrated by applying to study the existence and uniqueness of solution of a specific periodic boundary value problem.

Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.