Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea. Preventative vaccines or novel treatments based on a better understanding of the molecular basis of N. gonorrhoeae infection are required as resistance to current antibiotics is widespread. Toxin–antitoxin (TA) systems modulate bacterial physiology by interfering with vital cellular processes; type II TA systems, where both toxin and antitoxin are proteins, are the best-studied. Bioinformatics analysis revealed genes encoding an uncharacterized type II HicAB TA system in the N. gonorrhoeae strain FA1090 chromosome, which were also present in >83% of the other gonococcal genome sequences examined. Gonococcal HicA overproduction inhibited bacterial growth in Escherichia coli, an effect that could be counteracted by the co-expression of HicB. Kill/rescue assays showed that this effect was bacteriostatic rather than bactericidal. The site-directed mutagenesis of key histidine and glycine residues (Gly22, His24, His29) abolished HicA-mediated growth arrest. N. gonorrhoeae FA1090∆hicAB and complemented derivatives that expressed IPTG-inducible hicA, hicB, or hicAB, respectively, grew as wild type, except for IPTG-induced FA1090∆hicAB::hicA. RT-PCR demonstrated that hicAB are transcribed in vitro under the culture conditions used. The deletion of hicAB had no effect on biofilm formation. Our study describes the first characterization of a HicAB TA system in N. gonorrhoeae.

Details

Title
The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest
Author
Bagabas, Salwa S 1 ; Trujillo-Mendoza, Jorge 2   VIAFID ORCID Logo  ; Stocks, Michael J 3   VIAFID ORCID Logo  ; Turner David P. J. 2 ; Oldfield, Neil J 2   VIAFID ORCID Logo 

 Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 23445, Saudi Arabia; [email protected] 
 School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; [email protected] (J.T.-M.); [email protected] (D.P.J.T.) 
 School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; [email protected] 
First page
1619
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233234397
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.