Content area
The layout of a sensor network is a critical determinant of the precision and reliability of microseismic source localization. Addressing the impact of sensor network configuration on positioning accuracy, this paper introduces an innovative approach to sensor network optimization in underground space. It utilizes the Cramér-Rao Lower Bound principle to formulate an optimization function for the sensor network layout, followed by the deployment of an enhanced genetic encoding to solve this function and determine the optimal layout. The efficacy of proposed method is rigorously tested through simulation experiments and pencil-lead break experiments, substantiating its superiority. Its practical utility is further demonstrated through its application in a mining process within underground spaces, where the optimized sensor network solved by the proposed method achieves remarkable localization accuracy of 15 m with an accuracy rate of 4.22% in on-site blasting experiments. Moreover, the study elucidates general principles for sensor network layout that can inform the strategic placement of sensors in standard monitoring systems.
Details
1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
2 Coal Geological Exploration Institute of Gansu, Lanzhou 730000, China
3 China 19th Metallurgical Corporation, Chengdu 610031, China