Content area

Abstract

Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by ∼29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.

Approaches making virtual and experimental screening more resource-efficient are vital for identifying effective inhibitors from a vast pool of potential drugs but remain elusive. Here, the authors address this issue by developing an active learning framework leveraging high-throughput molecular dynamics simulations to identify potential inhibitors for therapeutic applications.

Details

1009240
Title
Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor
Author
Elez, Katarina 1   VIAFID ORCID Logo  ; Hempel, Tim 2   VIAFID ORCID Logo  ; Shrimp, Jonathan H. 3   VIAFID ORCID Logo  ; Moor, Nicole 4 ; Raich, Lluís 1 ; Rocha, Cheila 4 ; Winter, Robin 5 ; Le, Tuan 5 ; Pöhlmann, Stefan 4   VIAFID ORCID Logo  ; Hoffmann, Markus 4   VIAFID ORCID Logo  ; Hall, Matthew D. 3   VIAFID ORCID Logo  ; Noé, Frank 6   VIAFID ORCID Logo 

 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786) 
 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786); Department of Physics, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786); Microsoft Research AI for Science, Berlin, Germany (ROR: https://ror.org/04bpb0r34) (GRID: grid.506102.0) 
 National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA (ROR: https://ror.org/01cwqze88) (GRID: grid.94365.3d) (ISNI: 0000 0001 2297 5165) 
 Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany (ROR: https://ror.org/02f99v835) (GRID: grid.418215.b) (ISNI: 0000 0000 8502 7018); Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany (ROR: https://ror.org/01y9bpm73) (GRID: grid.7450.6) (ISNI: 0000 0001 2364 4210) 
 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786); Department of Bioinformatics, Bayer AG, Berlin, Germany (ROR: https://ror.org/04hmn8g73) (GRID: grid.420044.6) (ISNI: 0000 0004 0374 4101) 
 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786); Department of Physics, Freie Universität Berlin, Berlin, Germany (ROR: https://ror.org/046ak2485) (GRID: grid.14095.39) (ISNI: 0000 0001 2185 5786); Microsoft Research AI for Science, Berlin, Germany (ROR: https://ror.org/04bpb0r34) (GRID: grid.506102.0); Department of Chemistry, Rice University, Houston, TX, USA (ROR: https://ror.org/008zs3103) (GRID: grid.21940.3e) (ISNI: 0000 0004 1936 8278) 
Publication title
Volume
16
Issue
1
Pages
6949
Number of pages
13
Publication year
2025
Publication date
2025
Section
Article
Publisher
Nature Publishing Group
Place of publication
London
Country of publication
United States
Publication subject
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-29
Milestone dates
2025-07-14 (Registration); 2024-08-08 (Received); 2025-07-14 (Accepted)
Publication history
 
 
   First posting date
29 Jul 2025
ProQuest document ID
3234542037
Document URL
https://www.proquest.com/scholarly-journals/simulations-active-learning-enable-efficient/docview/3234542037/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-01
Database
ProQuest One Academic