Content area

Abstract

Data from high-throughput technologies assessing global patterns of biomolecules (omic data), is often afflicted with missing values and with measurement-specific biases (batch-effects), that hinder the quantitative comparison of independently acquired datasets. This work introduces batch-effect reduction trees (BERT), a high-performance method for data integration of incomplete omic profiles. We characterize BERT on large-scale data integration tasks with up to 5000 datasets from simulated and experimental data of different quantification techniques and omic types (proteomics, transcriptomics, metabolomics) as well as other datatypes e.g., clinical data, emphasizing the broad scope of the algorithm. Compared to the only available method for integration of incomplete omic data, HarmonizR, our method (1) retains up to five orders of magnitude more numeric values, (2) leverages multi-core and distributed-memory systems for up to 11 × runtime improvement (3) considers covariates and reference measurements to account for severely imbalanced or sparsely distributed conditions (up to 2 × improvement of average-silhouette-width).

This study presents BERT, an algorithm for high-performance integration of incomplete omics data with robustness to unequal phenotype distribution. It validates the method on simulated and experimental data from proteomics, metabolomics and transcriptomics.

Details

1009240
Business indexing term
Title
High performance data integration for large-scale analyses of incomplete Omic profiles using Batch-Effect Reduction Trees (BERT)
Author
Schumann, Yannis 1   VIAFID ORCID Logo  ; Schlumbohm, Simon 2 ; Neumann, Julia E. 3   VIAFID ORCID Logo  ; Neumann, Philipp 4   VIAFID ORCID Logo 

 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (ROR: https://ror.org/01js2sh04) (GRID: grid.7683.a) (ISNI: 0000 0004 0492 0453) 
 Chair for High Performance Computing, Helmut-Schmidt-University Hamburg, Hamburg, Germany (ROR: https://ror.org/04e8jbs38) (GRID: grid.49096.32) (ISNI: 0000 0001 2238 0831) 
 Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany (ROR: https://ror.org/01zgy1s35) (GRID: grid.13648.38) (ISNI: 0000 0001 2180 3484); Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany (ROR: https://ror.org/01zgy1s35) (GRID: grid.13648.38) (ISNI: 0000 0001 2180 3484) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (ROR: https://ror.org/01js2sh04) (GRID: grid.7683.a) (ISNI: 0000 0004 0492 0453); High Performance Computing & Data Science, University of Hamburg, Hamburg, Germany (ROR: https://ror.org/00g30e956) (GRID: grid.9026.d) (ISNI: 0000 0001 2287 2617) 
Publication title
Volume
16
Issue
1
Pages
7104
Number of pages
14
Publication year
2025
Publication date
2025
Section
Article
Publisher
Nature Publishing Group
Place of publication
London
Country of publication
United States
Publication subject
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-02
Milestone dates
2025-07-17 (Registration); 2025-02-04 (Received); 2025-07-14 (Accepted)
Publication history
 
 
   First posting date
02 Aug 2025
ProQuest document ID
3235846086
Document URL
https://www.proquest.com/scholarly-journals/high-performance-data-integration-large-scale/docview/3235846086/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-03
Database
ProQuest One Academic