Content area

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning, and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes, frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow begins with radiometric calibration to normalize pixel intensities and mitigate sensor noise, followed by Conditional Random Field (CRF) segmentation to isolate vehicles. YOLOv9, equipped with a bi-directional feature pyramid network (BiFPN), ensures precise multi-scale object detection. Hybrid feature extraction employs Maximally Stable Extremal Regions (MSER) for stable contour detection, Binary Robust Independent Elementary Features (BRIEF) for texture encoding, and Affine-SIFT (ASIFT) for viewpoint invariance. Quadratic Discriminant Analysis (QDA) enhances feature discrimination, while a Probabilistic Neural Network (PNN) performs Bayesian probability-based classification. Tested on the Roundabout Aerial Imagery (15,474 images, 985K instances) and AU-AIR (32,823 instances, 7 classes) datasets, the model achieves state-of-the-art accuracy of 95.54% and 94.14%, respectively. Its superior performance in detecting small-scale vehicles and resolving occlusions highlights its potential for intelligent traffic systems. Future work will extend testing to nighttime and adverse weather conditions while optimizing real-time UAV inference.

Details

1009240
Title
Remote Sensing Imagery for Multi-Stage Vehicle Detection and Classification via YOLOv9 and Deep Learner
Publication title
Volume
84
Issue
3
Pages
4491-4509
Number of pages
20
Publication year
2025
Publication date
2025
Section
ARTICLE
Publisher
Tech Science Press
Place of publication
Henderson
Country of publication
United States
Publication subject
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-30
Milestone dates
2025-03-14 (Received); 2025-05-27 (Accepted)
Publication history
 
 
   First posting date
30 Jul 2025
ProQuest document ID
3238361607
Document URL
https://www.proquest.com/scholarly-journals/remote-sensing-imagery-multi-stage-vehicle/docview/3238361607/se-2?accountid=208611
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-11
Database
ProQuest One Academic