It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning, and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes, frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow begins with radiometric calibration to normalize pixel intensities and mitigate sensor noise, followed by Conditional Random Field (CRF) segmentation to isolate vehicles. YOLOv9, equipped with a bi-directional feature pyramid network (BiFPN), ensures precise multi-scale object detection. Hybrid feature extraction employs Maximally Stable Extremal Regions (MSER) for stable contour detection, Binary Robust Independent Elementary Features (BRIEF) for texture encoding, and Affine-SIFT (ASIFT) for viewpoint invariance. Quadratic Discriminant Analysis (QDA) enhances feature discrimination, while a Probabilistic Neural Network (PNN) performs Bayesian probability-based classification. Tested on the Roundabout Aerial Imagery (15,474 images, 985K instances) and AU-AIR (32,823 instances, 7 classes) datasets, the model achieves state-of-the-art accuracy of 95.54% and 94.14%, respectively. Its superior performance in detecting small-scale vehicles and resolving occlusions highlights its potential for intelligent traffic systems. Future work will extend testing to nighttime and adverse weather conditions while optimizing real-time UAV inference.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





