Content area

Abstract

Early detection of Forest and Land Fires (FLF) is essential to prevent the rapid spread of fire as well as minimize environmental damage. However, accurate detection under real-world conditions, such as low light, haze, and complex backgrounds, remains a challenge for computer vision systems. This study evaluates the impact of three image enhancement techniques—Histogram Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE), and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke. The D-Fire dataset, consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels, was used to train and evaluate the model. Each enhancement method was applied to the dataset before training. Model performance was assessed using multiple metrics, including Precision, Recall, mean Average Precision at 50% IoU (mAP50), F1-score, and visual inspection through bounding box results. Experimental results show that all three enhancement techniques improved detection performance. HE yielded the highest mAP50 score of 0.771, along with a balanced precision of 0.784 and recall of 0.703, demonstrating strong generalization across different conditions. DBST-LCM CLAHE achieved the highest Precision score of 79%, effectively reducing false positives, particularly in scenes with dispersed smoke or complex textures. CLAHE, with slightly lower overall metrics, contributed to improved local feature detection. Each technique showed distinct advantages: HE enhanced global contrast; CLAHE improved local structure visibility; and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation. These results underline the importance of selecting preprocessing methods according to detection priorities, such as minimizing false alarms or maximizing completeness. This research does not propose a new model architecture but rather benchmarks a recent lightweight detector, YOLOv11, combined with image enhancement strategies for practical deployment in FLF monitoring. The findings support the integration of preprocessing techniques to improve detection accuracy, offering a foundation for real-time FLF detection systems on edge devices or drones, particularly in regions like Indonesia.

Details

1009240
Business indexing term
Title
Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires
Publication title
Volume
84
Issue
3
Pages
5361-5379
Number of pages
20
Publication year
2025
Publication date
2025
Section
ARTICLE
Publisher
Tech Science Press
Place of publication
Henderson
Country of publication
United States
Publication subject
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-30
Milestone dates
2025-05-01 (Received); 2025-06-18 (Accepted)
Publication history
 
 
   First posting date
30 Jul 2025
ProQuest document ID
3238361653
Document URL
https://www.proquest.com/scholarly-journals/integration-yolov11-histogram-equalization-fire/docview/3238361653/se-2?accountid=208611
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-03
Database
ProQuest One Academic