Content area

Abstract

Assessing the escalating biodiversity crisis, driven by climate change, habitat destruction, and exploitation, necessitates efficient monitoring strategies to assess species presence and abundance across diverse habitats. Video-based surveys using remote cameras are a promising, non-invasive way to collect valuable data in various environments. Yet, the analysis of recorded videos remains challenging due to time and expertise constraints. Recent advances in deep learning models have enhanced image processing capabilities in both object detection and classification. However, the impacts on models’ performances and usage on assessment of biodiversity metrics on videos is yet to be assessed. This study evaluates the impacts of video processing rates, detection and identification model performance, and post-processing algorithms on the accuracy of biodiversity metrics, using simulated remote videos of fish communities and 14,406 simulated automated processing pipelines. We found that a processing rate of one image per second minimizes errors while ensuring detection of all species. However, even near-perfect detection (both recall and precision of 0.99) and identification (accuracy of 0.99) models resulted in overestimation of total abundance, species richness and species diversity due to false positives. We reveal that post-processing model outputs using a confidence threshold approach (i.e., to discard most erroneous predictions while also discarding a smaller proportion of correct predictions) is the most efficient method to accurately estimate biodiversity from videos.

Details

1009240
Business indexing term
Title
Impact of deep learning and post-processing algorithms performances on biodiversity metrics assessed on videos
Publication title
PLoS One; San Francisco
Volume
20
Issue
8
First page
e0327577
Number of pages
15
Publication year
2025
Publication date
Aug 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-03-17 (Received); 2025-06-17 (Accepted); 2025-08-11 (Published)
ProQuest document ID
3238652879
Document URL
https://www.proquest.com/scholarly-journals/impact-deep-learning-post-processing-algorithms/docview/3238652879/se-2?accountid=208611
Copyright
© 2025 Fleuré et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-12
Database
ProQuest One Academic