Content area

Abstract

Accurate path tracking is crucial for greenhouse robots operating in complex environments. However, traditional curve tracking algorithms suffer from low tracking accuracy and large tracking errors. This study aim to develop a high precision greenhouse autonomous following robot, use ANSYS Workbench 19.2 to perform stress and deformation analysis on the robot, then propose a path tracking method based on Linear Quadratic Regulator (LQR) to optimize the pure tracking to ensure high precision curved path tracking for curved tracking, finally perform a comparative simulation analysis in MATLAB R2024a. The structural analysis shows that the maximum equivalent stress is 196 MPa and the maximum deformation is 1.73 mm under a load of 600 kg, which are within the yield limit of 45 steel. Simulation results demonstrate that at a speed of 2 m/s, the conventional Pure Pursuit algorithm incurs a maximum lateral error of 0.3418 m and a heading error of 0.2669 rad under high curvature conditions. By contrast, the LQR–Pure Pursuit algorithm reduces the peak lateral error to 0.0904 m and confines the heading error to approximately 0.0217 rad. Experimental validation yielded an RMSE of 0.018 m for lateral error and 0.016 m for heading error. These findings confirm that the designed robot can sustain its payload under most operating scenarios and that the proposed tracking strategy effectively suppresses deviations and improves path-following accuracy.

Details

1009240
Title
Design and Experiment of a Greenhouse Autonomous Following Robot Based on LQR–Pure Pursuit
Publication title
Volume
15
Issue
15
First page
1615
Number of pages
32
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-25
Milestone dates
2025-06-24 (Received); 2025-07-24 (Accepted)
Publication history
 
 
   First posting date
25 Jul 2025
ProQuest document ID
3239016043
Document URL
https://www.proquest.com/scholarly-journals/design-experiment-greenhouse-autonomous-following/docview/3239016043/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-13
Database
ProQuest One Academic