Content area

Abstract

The digital twin (DT) concept has recently gained widespread application for mapping the state of physical entities, enabling real-time analysis, prediction, and optimization, thereby enhancing the management and control of physical systems. However, when sensitive information is extracted from physical entities, it faces potential leakage risks, as DT service providers are typically honest yet curious. Federated learning (FL) offers a new distributed learning paradigm that protects privacy by transmitting model updates from edge servers to local devices, allowing training on local datasets. Nevertheless, the training parameters communicated between local mobile devices and edge servers may contain raw data that malicious adversaries could exploit. Furthermore, variations in mapping bias across local devices and the presence of malicious clients can degrade FL training accuracy. To address these security and privacy threats, this paper proposes the FL-FedDT scheme—a privacy-preserving and low-latency FL method that employs an enhanced Paillier homomorphic encryption algorithm to safeguard the privacy of local device parameters without transmitting data to the server. Our approach introduces an improved Paillier encryption method with a new hyperparameter and pre-calculates multiple random intermediate values during the key generation stage, significantly reducing encryption time and thereby expediting model training. Additionally, we implement a trusted FL global aggregation method that incorporates learning quality and interaction records to identify and mitigate malicious updates, dynamically adjusting weights to counteract the threat of malicious clients. To evaluate the efficiency of our proposed scheme, we conducted extensive experiments, with results validating that our approach achieves training accuracy and security on par with baseline methods, while substantially reducing FL iteration time. This enhancement contributes to improved DT mapping and service quality for physical entities. (The code for this study is publicly available on GitHub at: https://github.com/fujianU/federated-learning. The URL address of the MNIST dataset is: https://gitcode.com/Resource-Bundle-Collection/d47b0/overview?utm_source=pan_gitcode&index=top&type=href&;.)

Details

1009240
Business indexing term
Title
Federated learning for digital twin applications: a privacy-preserving and low-latency approach
Publication title
Number of pages
29
Publication year
2025
Publication date
Aug 8, 2025
Publisher
PeerJ, Inc.
Place of publication
San Diego
Country of publication
United States
Publication subject
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3239095308
Document URL
https://www.proquest.com/scholarly-journals/federated-learning-digital-twin-applications/docview/3239095308/se-2?accountid=208611
Copyright
© 2025 Li and Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-10
Database
ProQuest One Academic