Content area
External control arms can inform early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, accessing sufficient real-world or historical clinical trials data is challenging. Indeed, regulations protecting patients’ rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a method that leverages federated learning to enable inverse probability of treatment weighting for time-to-event outcomes on separate cohorts without needing to pool data. To showcase its potential, we apply it in different settings of increasing complexity, culminating with a real-world use-case in which our method is used to compare the treatment effect of two approved chemotherapy regimens using data from three separate cohorts of patients with metastatic pancreatic cancer. By sharing our code, we hope it will foster the creation of federated research networks and thus accelerate drug development.
External Control Arm methods for clinical trials were developed to compare the efficacy of a treatment to a control group that is built with data from external sources. Here, the authors present FedECA, a privacy-enhancing method for analyzing treatment effects across institutions, streamlining multi-centric trial design and thereby accelerating drug development while minimizing patient data exposure.
Details
1 Owkin, Inc., New York, NY, USA
2 Department of Digestive Oncology, Hôpital la Timone, Marseille, France (ROR: https://ror.org/05jrr4320) (GRID: grid.411266.6) (ISNI: 0000 0001 0404 1115)
3 GI oncology department Georges Pompidou European Hospital, Université Paris Cité, CARPEM CCC, 20 rue leblanc 75015 Paris, APHP, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602)
4 Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France (ROR: https://ror.org/00dmms154) (GRID: grid.417925.c); Institut du Cancer Paris CARPEM, AP-HP Centre, Hôpital Européen Georges Pompidou, Paris, France (ROR: https://ror.org/016vx5156) (GRID: grid.414093.b) (ISNI: 0000 0001 2183 5849)
5 Sorbonne University, Hepatogastroenterology and digestive oncology department, Pitié Salpêtrière hospital, APHP, Paris, France (ROR: https://ror.org/00pg5jh14) (GRID: grid.50550.35) (ISNI: 0000 0001 2175 4109)
6 Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France (ROR: https://ror.org/00dmms154) (GRID: grid.417925.c)
7 Université Paris Cité, Centre de Recherche sur l’Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France (ROR: https://ror.org/02feahw73) (GRID: grid.4444.0) (ISNI: 0000 0001 2112 9282)
8 Department of Pathology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France (ROR: https://ror.org/03jyzk483) (GRID: grid.411599.1) (ISNI: 0000 0000 8595 4540)
9 Fédération Francophone de Cancérologie Digestive, Dijon, France (ROR: https://ror.org/02q7qcb13) (GRID: grid.476348.a)
10 Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Catalonia, Spain (ROR: https://ror.org/020yb3m85) (GRID: grid.429182.4)
11 Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Catalonia, Spain (ROR: https://ror.org/020yb3m85) (GRID: grid.429182.4); Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Catalonia, Spain (ROR: https://ror.org/01j1eb875) (GRID: grid.418701.b) (ISNI: 0000 0001 2097 8389)
12 Pancreatic Cancer Action Network, El Segundo, CA, USA (ROR: https://ror.org/03t5n9b81) (GRID: grid.429965.5) (ISNI: 0000 0004 5900 2692)