Content area

Abstract

In recent years, the impact of landscape environments on tourists’ emotions has increasingly become a significant topic in sustainable tourism and urban planning research. However, studies on the relationship between multidimensional environmental features of Coastal National Parks and tourists’ emotions remain relatively limited. This study integrates machine learning and multi-source data to systematically explore how the landscape environments of Fujian’s Coastal National Parks influence tourists’ emotional fluctuations. Using natural language processing (NLP) techniques, sentiment indices were calculated from social media textual data, while semantic segmentation models and image analysis were employed to extract environmental feature data. The Light Gradient Boosting Machine (LightGBM) model and SHapley Additive exPlanations (SHAP) method were used to evaluate the relative importance of different environmental variables on tourists’ emotions, with the findings visualized using ArcMap. The results indicate: (1) Over the past five years, 87.06% of emotions were positive, with the highest sentiment indices observed in the Fuyao Islands, Changle, and Xiamen. (2) Greenness (0.0–0.2) and aquatic rate (0.1–0.15) had the most significant positive impacts on emotions, whereas transportation proportion and paving degree had relatively minor effects. This study provides a theoretical basis for the sustainable development of Coastal National Parks and offers practical insights for optimizing landscape planning to enhance tourists’ emotional experiences.

Full text

Turn on search term navigation

© 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.