Content area

Abstract

In this study, we propose a graph-based node classification to address challenges such as data scarcity, class imbalance, limited access to original textual content in benchmark datasets, semantic preservation, and model generalization in node classification tasks. Beyond simple data replication, we enhanced the Cora dataset by extracting content from its original PostScript files using a three-dimensional framework that combines in one pipeline NLP-based techniques such as PEGASUS paraphrase, synthetic model generation and a controlled subject aware synonym replacement. We substantially expanded the dataset to 17,780 nodes—representing an approximation of 6.57x scaling while maintaining semantic fidelity (WMD scores: 0.27-0.34). Our Bayesian Hyperparameter tuning was conducted using Optuna, along with k-fold cross-validation for a rigorous optimized model validation protocol. Our Graph Convolutional Network (GCN) model achieves 95.42% accuracy while Graph Attention Network (GAT) reaches 93.46%, even when scaled to a significantly larger dataset than the base. Our empirical analysis demonstrates that semantic-preserving augmentation helped us achieve better performance while maintaining model stability across scaled datasets, offering a cost-effective alternative to architectural complexity, making graph learning accessible to resource-constrained environments.

Details

1009240
Business indexing term
Title
Scalable Graph Learning with Graph Convolutional Networks and Graph Attention Networks: Addressing Class Imbalance Through Augmentation and Optimized Hyperparameter Tuning
Author
Volume
16
Issue
7
Number of pages
12
Publication year
2025
Publication date
2025
Publisher
Science and Information (SAI) Organization Limited
Place of publication
West Yorkshire
Country of publication
United Kingdom
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3240918307
Document URL
https://www.proquest.com/scholarly-journals/scalable-graph-learning-with-convolutional/docview/3240918307/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-29
Database
ProQuest One Academic