Content area

Abstract

Technological advancements are transforming teaching methods while offering wider windows into students’ learning journeys. Multi-modal Learning Analytics Dashboards (LADs) are tools that facilitate smart classroom orchestration by aggregating and analyzing students’ responses through sensors, such as facial expressions and heart rate, for real-time insights into student engagement and emotional states. In this study, we developed an LAD for open-ended activities in K-12 settings, where orchestration is non-linear and poses challenges for standardized evaluation methods. We engaged end users (e.g., educational researchers) in the process from the early design stages and investigated the feasibility of the LAD when used in the wild. The results show how affective data support greater awareness of students’ experiences, improving teachers’ orchestration through better decision-making and agency. Roadblocks were also identified regarding data interpretability, students’ privacy, and additional teacher workload, which can limit adoption and should be carefully addressed in future implementations. Further research should investigate students’ responses more closely and further develop strategies for the responsible, explainable, and unbiased use of student affective data in real classrooms.

Full text

Turn on search term navigation

© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.