Content area

Abstract

The rapid advancement of blockchain technology has introduced a new paradigm for constructing trusted digital economic infrastructure. However, its large-scale adoption remains constrained by dual challenges: on-chain and off-chain communication efficiency and security assurance. This paper addresses the universal demands of blockchain in complex application scenarios by proposing a low-latency, high-security, adaptive, and regulatory-compliant network communication technology bridging on-chain and off-chain systems. A hierarchical “device–edge–chain” communication architecture based on edge gateways is designed to address the critical challenge of achieving one-second on-chain processing for tens of millions of data entries. Experimental validation demonstrates that the system sustains transaction throughput at the scale of at least 10 million while consistently maintaining sub-second latency thresholds. Furthermore, implemented fault tolerance mechanisms ensure reliable operation through dynamic path switching and capacity-aware load redistribution. This architecture systematically resolves the performance–security–regulatory compliance trilemma inherent in conventional blockchain systems deployed within complex real-world environments.

Details

1009240
Title
On-Chain/Off-Chain Adaptive Low-Latency Network Communication Technology with High Security and Regulatory Compliance
Publication title
Volume
15
Issue
16
First page
8880
Number of pages
16
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-12
Milestone dates
2025-05-22 (Received); 2025-07-30 (Accepted)
Publication history
 
 
   First posting date
12 Aug 2025
ProQuest document ID
3243979637
Document URL
https://www.proquest.com/scholarly-journals/on-chain-off-adaptive-low-latency-network/docview/3243979637/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-27
Database
ProQuest One Academic