Content area
The rapid advancement of blockchain technology has introduced a new paradigm for constructing trusted digital economic infrastructure. However, its large-scale adoption remains constrained by dual challenges: on-chain and off-chain communication efficiency and security assurance. This paper addresses the universal demands of blockchain in complex application scenarios by proposing a low-latency, high-security, adaptive, and regulatory-compliant network communication technology bridging on-chain and off-chain systems. A hierarchical “device–edge–chain” communication architecture based on edge gateways is designed to address the critical challenge of achieving one-second on-chain processing for tens of millions of data entries. Experimental validation demonstrates that the system sustains transaction throughput at the scale of at least 10 million while consistently maintaining sub-second latency thresholds. Furthermore, implemented fault tolerance mechanisms ensure reliable operation through dynamic path switching and capacity-aware load redistribution. This architecture systematically resolves the performance–security–regulatory compliance trilemma inherent in conventional blockchain systems deployed within complex real-world environments.