Content area

Abstract

In freeform surface grid structures, quadrilateral meshes offer high visual transparency and simple joint connections, but their structural stability is relatively limited. To enhance stability, designers often introduce additional structural elements along the diagonals of the quadrilateral mesh, forming double-layer quadrilateral grid systems such as cable-braced gridshells. However, current design methodologies do not support the simultaneous optimization of both layers. As a result, the two layers are often designed independently in practical applications, leading to complex joint detailing that compromises construction efficiency, architectural aesthetics, and overall structural performance. To address these challenges, this study presents a weighted multi-objective geometry optimization framework based on a Guided-Projection algorithm. The proposed method integrates half-edge data structure and multiple geometric and structural constraints, enabling the simultaneous optimization of quadrilateral mesh planarity (i.e., panels lying on flat planes) and the orthogonality (i.e., angles approaching 90°) of diagonal cable layouts. Through multiple case studies, the method demonstrates significant improvements in panel planarity and cable orthogonality. The results also highlight the algorithm’s rapid convergence and high computational efficiency. Finite element analysis further validates the structural benefits of the optimized configurations, including reduced peak axial forces in cables, more uniform cable force distribution, and enhanced overall stiffness and buckling resistance. In conclusion, the method improves structural stability, constructability, and design efficiency, offering a practical tool for optimizing freeform cable-braced gridshells.

Details

1009240
Business indexing term
Location
Title
Geometric Optimization and Structural Analysis of Cable-Braced Gridshells on Freeform Surfaces
Author
Publication title
Buildings; Basel
Volume
15
Issue
16
First page
2816
Number of pages
18
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-08
Milestone dates
2025-07-06 (Received); 2025-08-05 (Accepted)
Publication history
 
 
   First posting date
08 Aug 2025
ProQuest document ID
3243994208
Document URL
https://www.proquest.com/scholarly-journals/geometric-optimization-structural-analysis-cable/docview/3243994208/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-27
Database
ProQuest One Academic