Content area

Abstract

This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that operates under constraints, including communication base station time windows, battery levels, and task uniqueness. To solve the above model, we propose an enhanced algorithm through integrating Dueling Deep Q-Network (Dueling DQN) into adaptive large neighborhood search (ALNS), referred to as Dueling DQN-ALNS. The Dueling DQN component develops a method to update strategy weights, while the action space defines the destruction and selection strategies for the ALNS scheduling solution across different time windows. Meanwhile, we design a two-stage algorithm framework consisting of centralized offline training and decentralized online scheduling. Compared to traditionally optimized search algorithms, the proposed algorithm could continuously and dynamically interact with the environment to acquire state information about the scheduling solution. The solution ability of Dueling DQN is 3.75% higher than that of the Ant Colony Optimization (ACO) algorithm, 5.9% higher than that of the basic ALNS algorithm, and 9.37% higher than that of the differential evolution algorithm (DE). This verified its efficiency and advantages in the scheduling problem of return communication tasks for UAVs.

Details

1009240
Title
Research on Scheduling Return Communication Tasks for UAV Swarms in Disaster Relief Scenarios
Publication title
Drones; Basel
Volume
9
Issue
8
First page
567
Number of pages
33
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-12
Milestone dates
2025-07-15 (Received); 2025-08-11 (Accepted)
Publication history
 
 
   First posting date
12 Aug 2025
ProQuest document ID
3244009750
Document URL
https://www.proquest.com/scholarly-journals/research-on-scheduling-return-communication-tasks/docview/3244009750/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-27
Database
ProQuest One Academic