Content area

Abstract

In resource-constrained edge environments—such as mobile devices, IoT systems, and electric vehicles—energy-efficient Convolution Neural Network (CNN) accelerators on mobile Field Programmable Gate Arrays (FPGAs) are gaining significant attention for real-time object detection tasks. This paper presents a low-power implementation of the Tiny YOLOv4 object detection model on the Xilinx ZCU104 FPGA platform by using Register Transfer Level (RTL) optimization techniques. We proposed three RTL techniques in the paper: (i) Local Explicit Clock Enable (LECE), (ii) operand isolation, and (iii) Enhanced Clock Gating (ECG). A novel low-power design of Multiply-Accumulate (MAC) operations, which is one of the main components in the AI algorithm, was proposed to eliminate redundant signal switching activities. The Tiny YOLOv4 model, trained on the COCO dataset, was quantized and compiled using the Tensil tool-chain for fixed-point inference deployment. Post-implementation evaluation using Vivado 2022.2 demonstrates around 29.4% reduction in total on-chip power. Our design supports real-time detection throughput while maintaining high accuracy, making it ideal for deployment in battery-constrained environments such as drones, surveillance systems, and autonomous vehicles. These results highlight the effectiveness of RTL-level power optimization for scalable and sustainable edge AI deployment.

Details

1009240
Company / organization
Title
Hardware Accelerator Design by Using RT-Level Power Optimization Techniques on FPGA for Future AI Mobile Applications
Publication title
Volume
14
Issue
16
First page
3317
Number of pages
13
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-20
Milestone dates
2025-07-08 (Received); 2025-08-19 (Accepted)
Publication history
 
 
   First posting date
20 Aug 2025
ProQuest document ID
3244013093
Document URL
https://www.proquest.com/scholarly-journals/hardware-accelerator-design-using-rt-level-power/docview/3244013093/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-26
Database
ProQuest One Academic