Content area

Abstract

Urban rail transit (URT) systems are essential to ensuring efficient and sustainable urban mobility. However, the core components of operational planning, service frequency setting, train timetabling, and train allocation are often optimized separately, leading to fragmented decision-making and suboptimal system performance. This study addresses that gap by proposing an integrated optimization framework that simultaneously considers all three planning layers under time-dependent passenger demand conditions. The problem is formulated as a bi-objective Integer Nonlinear Programming (INLP) model, aiming to jointly minimize passenger waiting time and total operational cost. To solve this large-scale, combinatorial problem, a tailored Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is developed. The algorithm incorporates discrete variable handling, constraint-preserving mechanisms, and a customized encoding scheme that aligns with the structural characteristics of URT operations. The proposed framework is applied to real-world data from the Addis Ababa Light Rail Transit (AALRT) system. The results demonstrate that the MOPSO-based approach offers a more diverse and operationally feasible set of trade-off solutions compared to a widely used benchmark algorithm, NSGA-II. Specifically, it provides transit planners with a flexible decision-support tool capable of identifying schedules that balance service quality and cost, based on varying strategic or budgetary priorities. By integrating interdependent planning decisions into a unified model and leveraging the strengths of a customized metaheuristic algorithm, this study contributes a scalable, adaptable, and practically relevant methodology for improving the performance of urban rail systems.

Details

1009240
Business indexing term
Title
A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service
Publication title
Volume
13
Issue
16
First page
2654
Number of pages
29
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Case Study, Journal Article
Publication history
 
 
Online publication date
2025-08-18
Milestone dates
2025-07-01 (Received); 2025-08-13 (Accepted)
Publication history
 
 
   First posting date
18 Aug 2025
ProQuest document ID
3244044828
Document URL
https://www.proquest.com/scholarly-journals/synchronized-optimization-method-frequency/docview/3244044828/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-02
Database
ProQuest One Academic