Content area
This paper proposes a double-three-phase permanent magnet fault-tolerant machine (DTP-PMFTM) with low short-circuit current for flywheel energy storage systems (FESS) to balance torque performance and short-circuit current suppression. The key innovation lies in its modular winding configuration that ensures electrical isolation between the two winding sets. First, the structural characteristics of the double three-phase windings are analyzed. Subsequently, the harmonic features of the resultant magnetomotive force (MMF) are systematically investigated. To verify the performance, the proposed machine is compared against a conventional winding structure as a baseline, focusing on key parameters such as output torque and short-circuit current. The experimental results demonstrate that the proposed machine achieves an average torque of approximately 14.7 N·m with a torque ripple of about 3.27%, a phase inductance of approximately 3.7 mH, and a short-circuit current of approximately 50.9 A. Crucially, compared to the conventional winding, the modular structure increases the phase inductance by about 32.1% and reduces the short-circuit current by 29.7%. Finally, an experimental platform is established to validate the performance of the machine.
Details
; Ling Zhijian 4
1 State Grid Beijing Electric Power Company, Beijing 100031, China; [email protected], Beijing Electric Power Economic Research Institute Co., Ltd., Beijing 100036, China
2 Energy Internet Research Institute, Tsinghua University, Beijing 100084, China
3 China Electric Power Research Institute, Beijing 100192, China
4 School of Electrical and Information-Engineering, Jiangsu University, Zhenjiang 212013, China