Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Emerging lighting technology aims to enhance indoor light quality while conserving energy through control systems that integrate with natural light. In related technologies, it is crucial to identify quickly and accurately indoor light environments that are constantly changing due to natural light. Consequently, a large number of sensors must be installed, but installing multiple sensors would cause an increasing data processing load and inconvenience to users’ activities. Some have attempted to calculate natural light characteristics, such as solar radiation and color temperature cycles, and implement natural light lighting technology by applying deep learning technology. However, there are only a few cases of using deep learning to analyze indoor illuminance, which is essential for commercializing natural light lighting technology. Research on minimizing the number of sensors is also lacking. This paper proposes a method for generating a detailed indoor illuminance map using deep learning, which calculates the illuminance values of the entire indoor area with a single illuminance sensor. A dataset was constructed by collecting dynamically changing indoor illuminance and the position of the sun, and a single sensor was selected through analysis. Then, a DNN model was built to calculate the illuminance of every region of an indoor space by inputting the illuminance measured by a single sensor and the position of the sun, and it was applied to generate a detailed indoor illuminance map. Research has demonstrated that calculating the illuminance levels across an entire indoor area is feasible. Specifically, on clear days with a color temperature anomaly of about 1%, a detailed illuminance map of the indoor space was created, achieving an average MAE of 2.0 Lux or an MAPE of 2.5%.

Details

Title
Method for Generating Real-Time Indoor Detailed Illuminance Maps Based on Deep Learning with a Single Sensor
Author
Seung-Taek, Oh 1   VIAFID ORCID Logo  ; You-Bin, Lee 2 ; Jae-Hyun, Lim 2 

 Smart Natural Space Research Center, Kongju National University, Cheonan 31080, Republic of Korea; [email protected] 
 Department of Computer Science & Engineering, Kongju National University, Cheonan 31080, Republic of Korea; [email protected] 
First page
5154
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3244061174
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.