Content area

Abstract

High-tech mechanical ventilators are engineered to deliver precise and consistent airflow, which is critical for effective respiratory therapy. This study evaluates flow control performance in a custom-built electro-pneumatic ventilator prototype, comparing Proportional-Integral-Derivative (PID) control with Fuzzy Logic Control (FLC) through real-time experiments on a test-lung platform to assess accuracy and adaptability under dynamic conditions. A laboratory based experimental study was conducted under laboratory conditions, using a test lung simulator and real-time flow data acquisition. The analysis included time-domain performance metrics and statistical validation through Bland–Altman analysis. Results indicate that both controllers meet the accuracy thresholds expected in commercial systems. However, the fuzzy logic controller exhibited narrower limits of agreement and lower standard deviation, indicating greater consistency. While PID control responded faster, with a settling time between 0.32 and 0.43 seconds, FLC achieved superior performance in high-demand scenarios, delivering an entire volume of 900 mL. Stability analysis using the Jury Test and Nyquist criteria confirmed that both systems are dynamically stable. Notably, the FLC curve in the Nyquist plot remained farther from the critical point (–1, 0j), indicating enhanced robustness against disturbances. These findings suggest that FLC may offer a reliable alternative to PID in nonlinear ventilation scenarios, particularly in resource-constrained environments seeking technological autonomy.

Details

1009240
Business indexing term
Title
Evaluation of flow control using PID versus fuzzy logic in an electropneumatic circuit for pulmonary ventilation applications
Publication title
PLoS One; San Francisco
Volume
20
Issue
9
First page
e0317809
Number of pages
14
Publication year
2025
Publication date
Sep 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-01-05 (Received); 2025-05-20 (Accepted); 2025-09-02 (Published)
ProQuest document ID
3246084639
Document URL
https://www.proquest.com/scholarly-journals/evaluation-flow-control-using-pid-versus-fuzzy/docview/3246084639/se-2?accountid=208611
Copyright
© 2025 González et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-03
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic