Content area

Abstract

Coal blending in thermal power plants is a complex multi-objective challenge involving economic, operational and environmental considerations. This study presents a Q-learning-enhanced NSGA-II (QLNSGA-II) algorithm that integrates the adaptive policy optimization of Q-learning with the elitist selection of NSGA-II to dynamically adjust crossover and mutation rates based on real-time performance metrics. A physics-based objective function takes into account the thermodynamics of ash fusion and the kinetics of pollutant emission, ensuring compliance with combustion efficiency and NOx limits. Benchmark tests on the Walking Fish Group (WFG) and Unconstrained Function (UF) suites show that QLNSGA-II achieves a 12.7% improvement in Inverted Generational Distance (IGD) and a 9.3% improvement in Hypervolume (HV) compared to prevailing algorithms. Industrial validation at the Huaneng Yingkou power plant confirms a 14.7% reduction in fuel cost and a 41% reduction in slagging incidence over conventional blending methods, backed by 12 months of operational data. Other benefits include a 24.8% reduction in sulphur content, a 6.9% increase in the plant’s net heat rate and annual savings of RMB 12.3 million, 2,150 tonnes of limestone and 38,500 tonnes of CO2-equivalent emissions. These results highlight QLNSGA-II as a scalable, robust solution for multi-objective coal blending, offering a promising way to improve the efficiency and sustainability of coal-fired power generation.

Details

1009240
Business indexing term
Location
Title
Reinforcement learning-enhanced multi-objective optimization for sustainable coal blending in thermal power plants
Publication title
PLoS One; San Francisco
Volume
20
Issue
9
First page
e0331208
Number of pages
26
Publication year
2025
Publication date
Sep 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-05-27 (Received); 2025-08-05 (Accepted); 2025-09-05 (Published)
ProQuest document ID
3247447026
Document URL
https://www.proquest.com/scholarly-journals/reinforcement-learning-enhanced-multi-objective/docview/3247447026/se-2?accountid=208611
Copyright
© 2025 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-06
Database
ProQuest One Academic