Content area

Abstract

The use of commercial off-the-shelf smart devices in digital signage for sentient spaces is emerging as a promising solution within smart city environments. In such scenarios, these devices are often required to execute resource-intensive applications despite limited local computational capacity. Although cloud and fog infrastructures have been proposed to offload demanding workloads, they are not always suitable due to privacy and security concerns. As a result, executing sentient space applications directly on smart devices may exceed their processing capabilities. To address this limitation, state-of-the-art solutions have introduced load balancing techniques for smart devices. However, these approaches typically rely on centralized coordination or require extensive system profiling, making them unsuitable for sentient spaces, where device availability is intermittent and cooperative behavior must remain lightweight, adaptive, and decentralized. This paper proposes a distributed load balancing strategy tailored for sentient spaces that operate without reliance on cloud or fog infrastructures. The approach is based on reactive cooperation among neighboring devices and employs a local feasibility-check mechanism to determine when to offload computation and which neighboring devices are available to process it. The proposed solution is evaluated in a laboratory setting that emulates a real-world sentient space scenario within a commercial mall. Experimental results show the effectiveness of the proposed approach in maintaining real-time performance and mitigating local computational overload without relying on centralized infrastructure. Even under dynamic operating conditions, the system achieves a load balancing execution time of 5 ms on an ARM Cortex-A53 processor integrated in an AMD Zynq UltraScale+ platform.

Details

1009240
Business indexing term
Title
Reactive Load Balancing for Sentient Spaces in Absence of Cloud and Fog
Publication title
Volume
14
Issue
17
First page
3458
Number of pages
27
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-29
Milestone dates
2025-07-28 (Received); 2025-08-27 (Accepted)
Publication history
 
 
   First posting date
29 Aug 2025
ProQuest document ID
3249684798
Document URL
https://www.proquest.com/scholarly-journals/reactive-load-balancing-sentient-spaces-absence/docview/3249684798/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-26
Database
ProQuest One Academic