Content area

Abstract

Complex optimization problems, such as traffic routing and electric vehicle (EV) charging scheduling, are becoming increasingly challenging for intelligent transportation systems (ITSs), in particular as computational resources are limited and network conditions evolve frequently. This paper explores a quantum computing approach to address these issues by proposing a hybrid quantum-classical (HQC) workflow that leverages the variational quantum eigensolver (VQE), an algorithm particularly well suited for execution on noisy intermediate-scale quantum (NISQ) hardware. To this end, the EV charging scheduling and traffic routing problems are both reformulated as binary optimization problems and then encoded into Ising Hamiltonians. Within each VQE iteration, a parametrized quantum circuit (PQC) is prepared and measured on the quantum processor to evaluate the Hamiltonian’s expectation value, while a classical optimizer—such as COBYLA, SPSA, Adam, or RMSProp—updates the circuit parameters until convergence. In order to find optimal or nearly optimal solutions, VQE uses PQCs in combination with classical optimization algorithms to iteratively minimize the problem Hamiltonian. Simulation results exhibit that the VQE-based method increases the efficiency of EV charging coordination and improves route selection performance. These results demonstrate how quantum computing will potentially advance optimization algorithms for next-generation ITSs, representing a practical step toward quantum-assisted mobility solutions.

Details

1009240
Title
Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling
Publication title
Volume
13
Issue
17
First page
2761
Number of pages
13
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-27
Milestone dates
2025-07-07 (Received); 2025-08-19 (Accepted)
Publication history
 
 
   First posting date
27 Aug 2025
ProQuest document ID
3249691672
Document URL
https://www.proquest.com/scholarly-journals/quantum-computing-intelligent-transportation/docview/3249691672/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-12
Database
ProQuest One Academic