Content area

Abstract

Power batteries are one of the important components of electric vehicles, but the manufacturing process of vehicle power batteries is complex and diverse. Traditional scheduling methods face challenges such as low production efficiency and inadequate quality control in complex production environments. To address these issues, a multi-objective optimization model with makespan, total machine load, and processing quality as the established objectives, and a Multi-objective Particle Swarm Energy Valley Optimization (MPSEVO) is proposed to solve the problem. MPSEVO integrates the advantages of Multi-objective Particle Swarm Optimization (MOPSO) and Energy Valley Optimization (EVO). In this algorithm, the particle stability level is combined in MOPSO, and different update strategies are used for particles of different stability to enhance both the convergence and diversity of the solutions. Furthermore, a local search strategy is designed to further enhance the algorithm to avoid the local optimal solutions. The Hypervolume (HV) and Inverted Generational Distance (IGD) indicators are often used to evaluate the convergence and diversity of multi-objective algorithms. The experimental results show that MPSEVO’s HV and IGD indicators are better than other algorithms in 10 computational experiments, which verifies the effectiveness of the proposed strategy and algorithm. The proposed method is also applied to solve the actual battery workshop scheduling problem. Compared with MOPSO, MPSEVO reduces the total machine load by 7 units and the defect rate by 0.05%. In addition, the effectiveness of each part of the improved algorithm was analyzed by ablation experiments. This paper provides some ideas for improving the solution performance of MOPSO, and also provides a theoretical reference for enhancing the production efficiency of the vehicle power battery manufacturing workshop.

Details

Business indexing term
Title
Scheduling Optimization of a Vehicle Power Battery Workshop Based on an Improved Multi-Objective Particle Swarm Optimization Method
Publication title
Volume
13
Issue
17
First page
2790
Number of pages
34
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-30
Milestone dates
2025-07-27 (Received); 2025-08-25 (Accepted)
Publication history
 
 
   First posting date
30 Aug 2025
ProQuest document ID
3249691852
Document URL
https://www.proquest.com/scholarly-journals/scheduling-optimization-vehicle-power-battery/docview/3249691852/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-12